AI Glossary
AblationAccuracy in Machine LearningActive Learning (Machine Learning)Adversarial Machine LearningAffective AIAI AgentsAI and EducationAI and FinanceAI and MedicineAI AssistantsAI DetectionAI EthicsAI Generated MusicAI HallucinationsAI HardwareAI in Customer ServiceAI InterpretabilityAI Lifecycle ManagementAI LiteracyAI MonitoringAI OversightAI PrivacyAI PrototypingAI Recommendation AlgorithmsAI RegulationAI ResilienceAI RobustnessAI SafetyAI ScalabilityAI SimulationAI StandardsAI SteeringAI TransparencyAI Video GenerationAI Voice TransferApproximate Dynamic ProgrammingArtificial Super IntelligenceBackpropagationBayesian Machine LearningBias-Variance TradeoffBinary Classification AIChatbotsClustering in Machine LearningComposite AIConfirmation Bias in Machine LearningConversational AIConvolutional Neural NetworksCounterfactual Explanations in AICurse of DimensionalityData LabelingDeep LearningDeep Reinforcement LearningDifferential PrivacyDimensionality ReductionEmbedding LayerEmergent BehaviorEntropy in Machine LearningEthical AIExplainable AIF1 Score in Machine LearningF2 ScoreFeedforward Neural NetworkFine Tuning in Deep LearningGated Recurrent UnitGenerative AIGraph Neural NetworksGround Truth in Machine LearningHidden LayerHuman Augmentation with AIHyperparameter TuningIntelligent Document ProcessingLarge Language Model (LLM)Loss FunctionMachine LearningMachine Learning in Algorithmic TradingModel DriftMultimodal LearningNatural Language Generation (NLG)Natural Language Processing (NLP)Natural Language Querying (NLQ)Natural Language Understanding (NLU)Neural Text-to-Speech (NTTS)NeuroevolutionObjective FunctionPrecision and RecallPretrainingRecurrent Neural NetworksTransformersUnsupervised LearningVoice CloningZero-shot Classification ModelsMachine Learning NeuronReproducibility in Machine LearningSemi-Supervised LearningSupervised LearningUncertainty in Machine Learning
Acoustic ModelsActivation FunctionsAdaGradAI AlignmentAI Emotion RecognitionAI GuardrailsAI Speech EnhancementArticulatory SynthesisAssociation Rule LearningAttention MechanismsAugmented IntelligenceAuto ClassificationAutoencoderAutoregressive ModelBatch Gradient DescentBeam Search AlgorithmBenchmarkingBoosting in Machine LearningCandidate SamplingCapsule Neural NetworkCausal InferenceClassificationClustering AlgorithmsCognitive ComputingCognitive MapCollaborative FilteringComputational CreativityComputational LinguisticsComputational PhenotypingComputational SemanticsConditional Variational AutoencodersConcatenative SynthesisConfidence Intervals in Machine LearningContext-Aware ComputingContrastive LearningCross Validation in Machine LearningCURE AlgorithmData AugmentationData DriftDecision IntelligenceDecision TreeDeepfake DetectionDiffusionDomain AdaptationDouble DescentEnd-to-end LearningEnsemble LearningEpoch in Machine LearningEvolutionary AlgorithmsExpectation MaximizationFeature LearningFeature SelectionFeature Store for Machine LearningFederated LearningFew Shot LearningFlajolet-Martin AlgorithmForward PropagationGaussian ProcessesGenerative Adversarial Networks (GANs)Genetic Algorithms in AIGradient Boosting Machines (GBMs)Gradient ClippingGradient ScalingGrapheme-to-Phoneme Conversion (G2P)GroundingHuman-in-the-Loop AIHyperparametersHomograph DisambiguationHooke-Jeeves AlgorithmHybrid AIImage RecognitionIncremental LearningInductive BiasInformation RetrievalInstruction TuningKeyphrase ExtractionKnowledge DistillationKnowledge Representation and Reasoningk-ShinglesLatent Dirichlet Allocation (LDA)Learning To RankLearning RateLogitsMachine Learning Life Cycle ManagementMachine Learning PreprocessingMachine TranslationMarkov Decision ProcessMetaheuristic AlgorithmsMixture of ExpertsModel InterpretabilityMonte Carlo LearningMultimodal AIMulti-task LearningMultitask Prompt TuningNaive Bayes ClassifierNamed Entity RecognitionNeural Radiance FieldsNeural Style TransferNeural Text-to-Speech (NTTS)One-Shot LearningOnline Gradient DescentOut-of-Distribution DetectionOverfitting and UnderfittingParametric Neural Networks Part-of-Speech TaggingPooling (Machine Learning)Principal Component AnalysisPrompt ChainingPrompt EngineeringPrompt TuningQuantum Machine Learning AlgorithmsRandom ForestRectified Linear Unit (ReLU)RegularizationRepresentation LearningRestricted Boltzmann MachinesRetrieval-Augmented Generation (RAG)RLHFSemantic Search AlgorithmsSemi-structured dataSentiment AnalysisSequence ModelingSemantic KernelSemantic NetworksSpike Neural NetworksStatistical Relational LearningSymbolic AITopic ModelingTokenizationTransfer LearningVanishing and Exploding GradientsVoice CloningWinnow AlgorithmWord Embeddings
Last updated on February 29, 20242 min read

AI Glossary

Welcome to your definitive resource on the world of machine learning, applied deep learning, and the rapidly-evolving field of Language AI.

Expertise has to start somewhere. Michelin-starred chefs started by making grilled cheese sandwiches (or their equivalent) as an after-school snack. World-class architects’ first real-world building experiences came in the form of stacking blocks in the corner of the nursery. Today’s top-tier aerospace engineers got their start with paper airplanes and hobby kits, back in the day.

One can imagine that most experts have an origin story. And if you’re looking to spin yourself up on all things AI, this resource could be yours. Just as master chefs learned the basics of cooking simple dishes, and architects began by stacking blocks, this AI glossary provides the building blocks of knowledge needed to understand artificial intelligence.

Covering everything from the history of AI to current state-of-the-art techniques, our glossary serves as a launchpad for your AI education. Understanding the foundational concepts such as machine learning, neural networks, and data science will provide the basis for delving deeper into how AI systems work. From the simplest terms to more complex methodologies, our glossary allows you to start from square one and progressively build your knowledge.

Think of this as your first model rocket, baking soda volcano, or birdhouse. Much like the early projects of experts got the wheels turning for greater things to come, our beginner's guide to AI terms and concepts could start you down the path of becoming an AI expert yourself. So whether you're just AI-curious or aiming for a career in the field, consider this glossary your origin story. Let's start learning.

This glossary is divided into sections, each of which has a general theme. In no particular order:

  • Fundamentals. If you’re starting from scratch, here’s where you begin by learning about foundational concepts like machine learning, natural language processing (NLP), and the AI computing hardware whirring away behind the scenes. 

  • Techniques. Once you get a feel for the basics, you’ll probably want to get acquainted with the myriad processes and methods within the AI model life cycle, from data cleaning to deployment. This section also has information about different model architectures, like diffusion models and transformers (the T in GPT).

  • Models. What’s the result of all the work done to build AI? Like a gossip column during fashion week, it’s all about the models. Here we profile some notable AI models, with a slight bias toward the world of Language AI. 

Unlock language AI at scale with an API call.

Get conversational intelligence with transcription and understanding on the world's best speech AI platform.

Sign Up FreeSchedule a Demo