Glossary
Hidden Markov Models (HMMs)
Datasets
Fundamentals
AblationAccuracy in Machine LearningActive Learning (Machine Learning)Adversarial Machine LearningAffective AIAI AgentsAI and EducationAI and FinanceAI and MedicineAI AssistantsAI DetectionAI EthicsAI Generated MusicAI HallucinationsAI HardwareAI in Customer ServiceAI InterpretabilityAI Lifecycle ManagementAI LiteracyAI MonitoringAI OversightAI PrivacyAI PrototypingAI Recommendation AlgorithmsAI RegulationAI ResilienceAI RobustnessAI SafetyAI ScalabilityAI SimulationAI StandardsAI SteeringAI TransparencyAI Video GenerationAI Voice TransferApproximate Dynamic ProgrammingArtificial Super IntelligenceBackpropagationBayesian Machine LearningBias-Variance TradeoffBinary Classification AIChatbotsClustering in Machine LearningComposite AIConfirmation Bias in Machine LearningConversational AIConvolutional Neural NetworksCounterfactual Explanations in AICurse of DimensionalityData LabelingDeep LearningDeep Reinforcement LearningDifferential PrivacyDimensionality ReductionEmbedding LayerEmergent BehaviorEntropy in Machine LearningEthical AIExplainable AIF1 Score in Machine LearningF2 ScoreFeedforward Neural NetworkFine Tuning in Deep LearningGated Recurrent UnitGenerative AIGraph Neural NetworksGround Truth in Machine LearningHidden LayerHuman Augmentation with AIHyperparameter TuningIntelligent Document ProcessingLarge Language Model (LLM)Loss FunctionMachine LearningMachine Learning in Algorithmic TradingModel DriftMultimodal LearningNatural Language Generation (NLG)Natural Language Processing (NLP)Natural Language Querying (NLQ)Natural Language Understanding (NLU)Neural Text-to-Speech (NTTS)NeuroevolutionObjective FunctionPrecision and RecallPretrainingRecurrent Neural NetworksTransformersUnsupervised LearningVoice CloningZero-shot Classification ModelsMachine Learning NeuronReproducibility in Machine LearningSemi-Supervised LearningSupervised LearningUncertainty in Machine Learning
Models
Packages
Techniques
Acoustic ModelsActivation FunctionsAdaGradAI AlignmentAI Emotion RecognitionAI GuardrailsAI Speech EnhancementArticulatory SynthesisAssociation Rule LearningAttention MechanismsAugmented IntelligenceAuto ClassificationAutoencoderAutoregressive ModelBatch Gradient DescentBeam Search AlgorithmBenchmarkingBoosting in Machine LearningCandidate SamplingCapsule Neural NetworkCausal InferenceClassificationClustering AlgorithmsCognitive ComputingCognitive MapCollaborative FilteringComputational CreativityComputational LinguisticsComputational PhenotypingComputational SemanticsConditional Variational AutoencodersConcatenative SynthesisConfidence Intervals in Machine LearningContext-Aware ComputingContrastive LearningCross Validation in Machine LearningCURE AlgorithmData AugmentationData DriftDecision IntelligenceDecision TreeDeepfake DetectionDiffusionDomain AdaptationDouble DescentEnd-to-end LearningEnsemble LearningEpoch in Machine LearningEvolutionary AlgorithmsExpectation MaximizationFeature LearningFeature SelectionFeature Store for Machine LearningFederated LearningFew Shot LearningFlajolet-Martin AlgorithmForward PropagationGaussian ProcessesGenerative Adversarial Networks (GANs)Genetic Algorithms in AIGradient Boosting Machines (GBMs)Gradient ClippingGradient ScalingGrapheme-to-Phoneme Conversion (G2P)GroundingHuman-in-the-Loop AIHyperparametersHomograph DisambiguationHooke-Jeeves AlgorithmHybrid AIImage RecognitionIncremental LearningInductive BiasInformation RetrievalInstruction TuningKeyphrase ExtractionKnowledge DistillationKnowledge Representation and Reasoningk-ShinglesLatent Dirichlet Allocation (LDA)Learning To RankLearning RateLogitsMachine Learning Life Cycle ManagementMachine Learning PreprocessingMachine TranslationMarkov Decision ProcessMetaheuristic AlgorithmsMixture of ExpertsModel InterpretabilityMonte Carlo LearningMultimodal AIMulti-task LearningMultitask Prompt TuningNaive Bayes ClassifierNamed Entity RecognitionNeural Radiance FieldsNeural Style TransferNeural Text-to-Speech (NTTS)One-Shot LearningOnline Gradient DescentOut-of-Distribution DetectionOverfitting and UnderfittingParametric Neural Networks Part-of-Speech TaggingPooling (Machine Learning)Principal Component AnalysisPrompt ChainingPrompt EngineeringPrompt TuningQuantum Machine Learning AlgorithmsRandom ForestRectified Linear Unit (ReLU)RegularizationRepresentation LearningRestricted Boltzmann MachinesRetrieval-Augmented Generation (RAG)RLHFSemantic Search AlgorithmsSemi-structured dataSentiment AnalysisSequence ModelingSemantic KernelSemantic NetworksSpike Neural NetworksStatistical Relational LearningSymbolic AITopic ModelingTokenizationTransfer LearningVanishing and Exploding GradientsVoice CloningWinnow AlgorithmWord Embeddings
Last updated on February 23, 20244 min read

Hidden Markov Models (HMMs)

Introduction to Hidden Markov Models (HMMs)

Hidden Markov Models (HMMs), emerging in the early 1960s, extend the concept of Markov chains to more complex scenarios. A Markov chain is a stochastic model that describes systems where the probability of each future state depends only on the current state and not on the sequence of events that preceded it.  This is ideal for modeling sequential data to understand the evolution of various conditions or states that influence the likelihood of events.

Consider the UK's unpredictable weather, where the state of the weather—be it "Cloudy ☁️", "Rainy ☔", or "Snowy ❄️"—influences daily life, from dress styles to emotions. For example, on a rainy day, there might be a 60% chance of it continuing to rain, 30% of turning cloudy, and 10% of snowfall. These transition probabilities, along with the observable impacts on people, form the basis of a Markov chain.

The Markov chain is characterized by 3 properties:

  • Limited number of possible states (outcomes e.g cloudy, rainy, and snowy)

  • The Markov property (memorylessness)

  • Constant transition probabilities over time.

However, real-world scenarios often involve complexities where these states are not directly observable, leading to the development of Hidden Markov Models. These models account for unseen factors influencing observable outcomes, hence the term 'hidden.' This mirrors real-life events where we can see observable outcomes, but figuring out what caused it in the beginning is a bit of a mystery. With HMMs, you are basically reverse engineering a Markov chain to uncover what's driving the observed sequence.

In the following sections, we'll explore the intricacies of HMMs and their applications, delving into how they extend and sophisticate the foundational concept of Markov chains.

HMMs answer questions like:

  • What's driving the observed sequence?

  • What is the most likely next action or state based on the past observations?

How HMMs Work

HMMs are stochastic in nature and operate on the principles of uncertainty. The foundational theories underpinning HMMs are essential to understanding their probabilistic nature:

  • Independence Assumption: Assumes that the observed emissions are conditionally independent given the hidden states. Simplifies the modeling assumptions, allowing for efficient computations.

  • Chain Rule of Probability: The joint probability of a sequence of events is the product of the individual probabilities. In HMMs, the joint probability of an observed sequence and a sequence of hidden states is computed as the product of emission and transition probabilities, simplifying calculations in the Forward Algorithm.

  • Law of Total Probability: The probability of an event A is the sum of the probabilities of A given different mutually exclusive and exhaustive events B. It is used in the Forward Algorithm to compute the probability of an observation sequence by summing over all possible hidden state sequences.

  • Bayes' Theorem: Describes the probability of an event based on prior knowledge of conditions that might be related to the event. The Baum-Welch Algorithm uses this concept for estimating model parameters by updating probabilities based on observed data.

It's important to note that these models have limitations when dealing with data that features constantly changing probabilities.

Formal Representation of HMMs

To fully grasp Hidden Markov Models, it's crucial to understand their key components:

  • States: The hidden variables of an HMM, representing the underlying causes of observed outputs, are its states.  They are not directly observable and are typically modeled as a discrete set. In speech recognition, for instance, states might correspond to phonemes. With English having 44 phonemes, our HMM could have 44 states.

  • Emission probabilities: These probabilities reflect how likely it is to observe a specific output given a certain state. Represented as a matrix, each entry indicates the likelihood of observing an output in a state. For example, in speech recognition, the matrix would detail the probability of hearing a specific sound when a certain phoneme is spoken.

Unlock language AI at scale with an API call.

Get conversational intelligence with transcription and understanding on the world's best speech AI platform.

Sign Up FreeSchedule a Demo